
Using OpenMP*
effectively on Theta -
Hands-on labs
Carlos Rosales-Fernandez

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Access and getting the files

In this hands-on session you will practice OpenMP* tasking, SIMD, and affinity
settings. Three exercises are provided, with submission scripts for Theta and
proposed solutions.

To get started, copy the files to a directory of your choosing in the /projects area:

 $ tar xzvf /projects/SDL_Workshop/crosales/SDL_2018/
omp.tar.gz

Then change into the omp directory:

 $ cd ./omp

Lab 1 - Affinity control
with OpenMP*

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Lab 1 - OpenMP* Affinity Control

We will use a simple hand-written matrix-matrix multiplication example to
illustrate the effect of affinity on runtime.

To get started, change into the affinity directory:

 $ cd ./affinity

Inside this directory you will find a simple build.sh script and COBALT
submission script - affinity.run.
Start by executing the build script:

 $./build.sh

This will generate the mat.omp executable that you need to complete this
exercise.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Lab 1 - OpenMP* Affinity Control

Submit the affinity.run script to run the example code with a variety of affinity
settings and thread counts:

 $ qsub ./affinity.run

This will generate an output file, affinity.out, which contains details of each run
configuration and the approximate performance achieved.

Inspect the output file and try to answer the following questions:

§  What seems to be the best affinity setting combination for this code?

§  What is the speedup achieved by using optimal affinity settings?

§  Can you modify the submission script to add other affinity settings (or thread
counts) and test to see if there are alternatives that work better?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Lab 1 - Solution

The best combination should be using the following:
§  OMP_NUM_THREADS=64
§  OMP_PLACES=cores
§  OMP_PROC_BIND=spread

Note the following characteristics:
§  Since KNL is capable of issuing 2 vector instructions per core per cycle from a

single thread ,there is no need to go over 64 threads to achieve maximum
performance in a code of this type - Feel free to try and measure the performance.

§  Using a compact affinity setting leaves cores unused and leads to lower overall
performance.

Lab 2 - Basic Task
concepts

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Lab 2 - Basic Task Generation and Execution

In this example you will build a simple code that uses tasks to print out the simple
sentence:

First, change to the basic directory:

 $ cd ./basic

Now edit the provided sequential version basic.c so that each of the words in the
sentence is printed to screen from a separate task. Remember that you will have to:
§  Define a parallel region
§  Generate the tasks within a single construct
Compile your new version (don’t forget the -qopenmp flag) and ensure there are no
compilation errors.

Hello World from OpenMP!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Lab 2 - Testing

Now launch the provided basic.run script so that you can see the output of your
code when using multiple threads:

 $ qsub ./basic.run

The script assumes your executable is called a.out, and profides the output in file
basic.out.

Did the sentence come out correctly? It is unlikely, unless you used any type of
synchronization - if you did you are ahead of the game - congratulations!

Now try to come up with two implementations that write the output in order while
still using the same number of tasks. Do not worry about serialization - this
exercise is not about performance, but methodology.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

In solution 1 we simply place a taskwait
statement in between each printf command,
so that the output is serialized.

This is a simple way of ensuring order but,
in more complex problems it completely
defies the purpose of using OpenMP* in the
first place.

Lab 2 - Solution 1

 #pragma omp parallel
 {

 #pragma omp single
 {
 #pragma omp task

 printf(“Hello “);
 #pragma omp taskwait
 #pragma omp task

 printf(“World “);
 #pragma omp taskwait
 #pragma omp task

 printf(“from”);
 #pragma omp taskwait
 #pragma omp task

 printf(“OpenMP!”);
 }

 }

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

In solution 2 we use the
alternative method of defining
dependencies among tasks.

In this simple example the result is
the same - complete reordering at
the expense of full serialization.

But in more complex codes
defining dependencies may allow
for greater parallel execution
opportunities at runtime.

Lab 2 - Solution 2

 #pragma omp parallel
 {

 #pragma omp single
 {
 #pragma omp task depend(out:a)

 a = printf(“Hello “);

 #pragma omp task depend(in:a) depend(out:b)
 b = printf(“World “);

 #pragma omp task depend(in:b) depend(out:c)
 c = printf(“from”);

 #pragma omp task depend(in:c)
 printf(“OpenMP!”);

 }
 }

Lab 3 - Fibonacci
generator

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Lab 3 - A Simple Fibonacci Number Generator

The Fibonacci series is an integer series defined by having numbers which, after the first one, are the
sum of the previous two in the series:

A simple Fibonacci generator can be coded as a recursive function:

 1, 1, 2, 3, 5, 8, 13, 21, …

 int fib(int n)
 {

 if(n < 2) return n;
 int i = fib(n - 1);
 int j = fib(n - 2);
 return i+j;

 }

Your mission, should you choose to accept it, is to create a new version of this function that can be
executed in parallel using OpenMP* constructs.

The following slides guide you through the process, and point to a solution in case you get stuck.

 int main(int argc,
 char *argv[])
 {

 ...
 answer = fib(number);
 ...

 }

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Lab 3 - Getting started

First go to the Fibonacci directory:

 $ cd ../fibonacci

Inside this directory you will find three subdirectories named ver0, ver1, ver2.
They each correspond to a version of the Fibonnaci number generator:

§  ver0 - serial implementation, for reference and getting started.
§  ver1 - proposed simple tasking solution
§  ver2 - proposed refined tasking solution
Start by making a copy of version 0 so that you can work with it and still have a
clear reference code to go back to:

 $ cp ./ver0/* ./

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Lab 3 - Some Hints

I’m not going to tell you exactly how to do this, but remember two critical things:

1.  You MUST initiate the task generation process inside a single region within a
parallel OpenMP* region - in this case main would be the right place to do this.

2.  If you look inside the fib.c source file you will see that the fib() function either
returns immediately or has two independent tasks to perform.

3.  Once those tasks are performed their value is added and returned - perhaps an
appropriate location for a synchronization point.

Try to use this hints and what you have learned to parallelize this recursive code using
OpenMP* tasks.

Next slide has the answer if you get stuck!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Lab 3 - Proposed Solution (ver1)

Our proposed solution has a single task entering the function fib() from main(). It then
generates two additional tasks to execute calls to fib() independently for (n-1) and (n-2):

 int fib(int n)
 {

 if(n < 2) return n;
 int i, j;
 #pragma omp task shared(i)
 {
 i = fib(n - 1);
 }
 #pragma omp task shared(j)
 {
 j = fib(n - 2);
 }
 #pragma omp taskwait
 return i+j;

 }

 int main(int argc,
 char *argv[])
 {

 ...
 #pragma omp parallel
 {
 #pragma omp single
 {
 #pragma omp task
 answer = fib(number);
 }
 }
 ...

 }

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Lab 3 - Analysis of the Solution

Whether using your own version or the proposed solution in directory ver1,
submit a quick job to determine how scalable your implementation is:

 $ qsub ./tasking.run

This will save the number of threads and the time taken to determine the 41st
number in the Fibonacci series to an output file called tasking.out.

§  What is the best speedup you can get out of this code, from 4 to 128 threads?

§  Is this faster or slower than the original serial implementation?

§  Can you think of any way to improve the proposed solution?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Lab 3 - A Better Solution (ver2)

It turns out that the proposed solution in ver1 works correctly, but generates excessive overhead
by generating too many tasks.

Ideally one would include a variable threshold below which a serial function is used rather than a
parallelized one. This is what the solution in the directory ver2 provides.

Try to develop your own version of this hybrid code that enables better workload balance or, if you
prefer, look at the solution provided in ver2 and described in the next slide.

Go to the ver2 directory (or use your own solution) to submit the tasking.run script to complete a
new scalability analysis. Can you see the difference in scalability and speedup?

Feel free to change the value of the defined “SPLITTER” variable and observe its effects on
performance. Remember you will need to recompile the code each time you make a change to
this variable.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Lab 3 - Proposed Solution (ver2)

Our proposed solution does not create a new task once a small enough n is reached:

 int fib(int n)
 {

 if(n < 2) return n;
 int i, j;
 #pragma omp task shared(i) if(n>30)
 {
 i = fib(n - 1);
 }
 #pragma omp task shared(j) if(n>30)
 {
 j = fib(n - 2);
 }
 #pragma omp taskwait
 return i+j;

 }

 int main(int argc,
 char *argv[])
 {

 ...
 #pragma omp parallel
 {
 #pragma omp single
 {
 #pragma omp task
 answer = fib(number);
 }
 }
 ...

 }

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice <w/o benchmarks>

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

20

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

